Further Evidence for Attractive Interactions between Gold(1) Centers in Binuclear Complexes

Hubert Schmidbaur*, Klaus Dziwok, Andreas Grohmann*), and Gerhard Muller *)

Anorganisch-chemisches Institut der Technischen Universitat Miinchen, LichtenbergstraDe **4,** D-8046 Garching

Received December 27, 1988

Key Words: Attractive interactions / Gold complexes / Phosphane derivatives

Another example **of** the conformation-determining attractive interaction between gold(I) centers is presented, based on changes in the conformation **of** the butadiene skeleton. The **s-trans** ground state geometry of 2,3-bis(diphenylphosphino)-1,3-butadiene **(2) is** abandoned in the gold complex **3,** and the two gold atoms axe brought **into** contact at a distance **of 3.023(1)A.** The conformational change **of** the ligand also **occurs** at a single metal atom, where **the** bisphosphine acts as a difunctional chelating ligand, **as** demonstrated in the rhodium complex **4.**

Structural^{1,2)} and spectroscopic studies^{$3,4)$} on mono- and polynuclear gold(1) compounds have provided indirect evidence **of** an attractive interaction between the gold atoms. This weak bonding appears to be operative perpendicular to the linear $X - Au - L$ axes and leads either to a catenated or layered aggregation of the mol- :cules by Au...Au contacts, which are ca. 3.0 **A** in length, or to the intramolecular pairing **of** the gold atoms with similar equilibrium distances. It can be described as a 5d"- 5d" interaction based on a mixing with the $6s²$ states⁵⁾, whose energy difference is lowered by relativistic effects^{6,7)}. In the case of the neighbour element mercury these effects are less obvious and restricted to only a few examples⁸⁾. However, recent work has shown that Au ... Hg interactions can also be detected in complexes tailored after the $Au \cdots Au$ precedents⁹⁾.

In our search for further experimental evidence and for means to determine directly or indirectly the strength of this force quantitatively, initially doubly phosphino-substituted *ylides* **1** where chosen as model system. These compounds change their ground state *synlanti* orientation to a symmetrical *synlsyn* conformation upon double complexation with $AuCl^{2c}$. In the complex the two gold(I) zentres are seperated by 3.000(1) Å. From temperature-dependent NMR studies the energy of the $Au \cdots Au$ interaction can be estimated to be in the order of $7-8$ kcal/mol. Example the strength of this formulate the second of the AuCl²⁰. In the complex the two strength of the Au $\cdot \cdot$ Au interactio

We report in this paper another example of the conformationietermining attractive interaction between gold(1) centers, based on :hanges in the conformation of the *butadiene* skeleton. The ground ;tate geometry of butadiene is determined by the conjugation of :he two π systems, and only two conformers represent energy minma in the energy profile of $C2 - C3$ rotation.

At room temperature the *s-trans* form is clearly favoured over the *s-cis* form *(s-cisls-trans* ratio 1 :99")). As a consequence **of** the preferred *s-trans* conformation butadiene shows low reactivity in Diels-Alder **[4** + 21 cycloadditions, which require the *s-cis* arrangement. According to electron diffraction¹¹, microwave¹², NMR¹³, UV *l4l,* infrared and Raman **Is)** data, and the results of force-field and ab initio calculations **16)** the *s-trans* form of the unsubstituted butadiene is about 3 kcal/mol more stable than the *s-cis* isomer, and rotation requires an activation energy **of** 6-8 kcal/mol. The *s-cis* conformation shows a *gauche* arrangement with a torsion angle **of** 23° as the ground state.

Experimental observations indicate that the *s-cisls-trans* ratio can be affected by bulky ligands: Single substitution at C-2 thus favours the (nonplanar) *s-cis* isomer, whereas a 2,3-dibsubstitution induces the (planar) *s-trans* form even more strongly. An example is 2,3 **bis[bis(dimethylamino)phosphinyl]-l,3-butadiene,** which shows an almost perfectly planar s-trans-butadiene skeleton¹⁷⁾.

A similar situation is also encountered in the case of 2,3-bis(di**phenylphosphino)-l,3-butadiene (2),** which is readily accessible'*'. Due to its *s-trans* conformation **2** shows no afinity for a Diels-Alder $[4 + 2]$ cycloaddition.

Reaction of **2** with two equivalents of [(CO)AuCI] affords with CO evolution $-$ the 2:1 complex 3 in high yields, whose composition is confirmed by spectroscopic and analytical data.

In order to determine the solid-state configuration **of** the butadiene skeleton, an X-ray analysis of the complex was performed (see Experimental). This study showed that the *s-trans* conformation of **2** is abandoned during formation of the complex **3.** The product adopts a *gauche* conformation with torsion angles $P1 - C1 - C2$

^{*)} X-ray crystal structure analysis.

P2 and $C11 - C1 - C2 - C21$ of 99.9 and 106.2°, respectively, as expected for the distortion in a crowded s-cis structure. The gold(1) atoms are brought into contact at a distance of $3.023(1)$ Å. With this $Au \cdots Au$ interaction taken into account, the structure corresponds to a six-membered ring in a twist configuration. The overall molecular symmetry is approximately C_2 (Figure 1). The two chlorine atoms are located on different sides of the ring, thus reducing steric interactions. Consequently, the linearity of the $P - Au - Cl$ axes is almost unaffected, as compared to the marked deformation of these angles in complex **la,** where the Au-CI axes are almost parallel, placing the Cl atoms close to each other^{2c)}.

Figure 1. Perspective view of the molecular structure of **3** as seen approximately down the noncrystallographic twofold axis (OR-TEP, displacement ellipsoids at the 50% probability level; H atoms omitted for clarity)

If it is assumed that the s-trans \rightarrow s-cis reorientation is caused by $Au \cdots Au$ attraction, the bond energy can again be estimated from the above mentioned energy values. The difference of the energies of the two conformers **in** the order of 7 kcal/mol **is** in satisfactory agreement with the value derived for compound **la.**

Much less surprisingly, $C - C$ rotation of the 2,3-bisphosphinosubstituted butadiene skeleton also occurs at a metal center, where the bisphosphine can act as a difunctional chelating ligand, as observed in the reaction of 2 with $[(CO)_2RhCl]_2$ with formation of 4.

Compound **4** is isolated as a yellow microcrystalline solid and is easily identified by standard analytical and spectroscopic techniques. The s-cis conformation of **4** is also demonstrated in the affinity of the complex for ethyl vinyl ether in a $[4 + 2]$ cycloaddition^{24}, which does not occur with the free ligand.

This work was supported by the Deutsche Forschungsgemeinschaft (Leibniz program), by the *Fonds der Chemischen Industrie*, and by Hoechst *AG* and Degussa AG. We thank *J.* Riede for supplying the crystallographic data sets.

Experimental

*p-[2,3-Bis(diphenylphosphino)-f ,3-butadiene-P,P']-dichlorodi*gold(I) (Au- Au) **(3):** A suspension of 0.85 g of [(CO)AuCI] (3.26

mmol) in toluene (15 ml) was treated with a solution of 0.69 g of 2^{18} (1.63 mmol) in toluene (10 ml). Evolution of CO was observed. After stirring for 16 h at room temp. the mixture was filtered and the white precipitate washed several times with pentane, dried under reduced pressure, and recrystallized from chloroform: Yield 1.36 **g** (88%), m. p. 260°C (decomp.). $-$ ¹H NMR (CDCl₃, 20°C): $\delta = 5.3$ (d, AA'BB'XX', $N = 15$ Hz, 2H, cis-CH); 6.0 (d, AA'BB'XX', $N =$ 30 Hz, 2H, trans-CH); 7.4 - 8.0 (m, 20 H, Ph). $-$ ³¹P NMR (CDCl₃, 125.4 (centered dd, AXX', $N = 69.5$ Hz, C-1); 129.6 (t, AXX', $N =$ 11.7 Hz, C-2); 132.9 **(s,** C-4); 134.7 (t, AXX', *N* = 14.7 Hz, C-3); 140.0 (centered dd, AXX', $N = 63.5$ Hz, CP); CH₂: obscured by c-3. 20[°]C): $\delta = 33.58$ (s). $-$ ¹³C NMR (CDCl₃/F₃CCO₂H, 20[°]C): $\delta =$

$$
C_{28}H_{24}Au_2Cl_2P_2
$$
 (887.3) *Calcd.* C 37.90 H 2.73
Found C 38.43 H 2.87

Bis[2,3-bis(diphenylphosphino)-f .3-butadiene-P,P']rhodium Chloride (4): A solution of 0.11 g of $[(CO)_2RhCl]_2$ (0.283 mmol) in benzene (10 ml) was treated with a solution of 0.50 **g** of **2** (1.18 mmol) in the same solvent (15 ml). The reaction mixture was stirred for ca. 12 h. The yellow precipitate was filtered, washed with benzene and dried under reduced pressure. Yield 0.50 **g** (90%), m.p. 250°C (decomp.). - ¹H NMR (CDCl₃, 20°C): $\delta = 5.17$ (t, $N =$ 12 Hz, 2C, cis-CH); 6.07 (centered dd, *N* = 26.6 Hz, 2H, trans-CH); 6.9 – 7.6 (m, 20 H, Ph). $-$ ³¹P NMR (CDCl₃, 20^oC): $\delta = 44.2$ $[d, {}^{1}J(Rh-P) = 131.2 Hz]$. - ${}^{13}C NMR (CDCl_3, 20°C): \delta = 125.5$ (broad **s,** CH,); 128.1 (broad **s,** C-2); 128.8 ("quint", *N* = 46.86 Hz, C-1); 130.7 **(s,** C-4); 133.3 ("quint", *N* = 13.7 Hz, C-3); 145.2 ("quint", $N = 84$ Hz, CP); ¹H coupled: ¹J(CH) = 160.1 Hz (CH₂).

 $C_{56}H_{48}ClP_{4}Rh$ (983.3) Calcd. C 68.41 H 4.97 Cl 3.61 Found C 66.85 H 4.96 CI 4.11

X-Ray Structure Analysis of 3: Syntex P2₁ diffractometer, Mo- K_{α} radiation, $\lambda = 0.71069 \text{ Å}$, graphite monochromator, $T =$ K_{α} radiation, $\lambda = 0.71069$ A, graphite monochromator, $T = -50$ °C. Crystal data: C₂₈H₂₄Au₂Cl₂P₂, $M_{\tau} = 887.29$, monoclinic, space group $P2_1$ (No. 4), $a = 9.099(1)$, $b = 11.509(1)$, $c = 12.920(2)$ Å, $\beta =$ space group $P2_1$ (No. 4), $a = 9.099(1)$, $b = 11.509(1)$, $c =$ $Z = 2$, $\mu(\text{Mo-}K_{\alpha}) = 112.7 \text{ cm}^{-1}$, $F(000) = 828$. The integrated intensities of 5596 reflexions were measured up to (sin $\Theta/\lambda_{\text{max}} =$ 0.617 Å^{-1} (hkl: +11, ± 14 , ± 15 ; ω scan, $\Delta \omega = 0.8^{\circ}$). Lp and empirical absorption corrections (rel. transmission: $0.64 - 1.00$) were applied to the data. After merging of equivalent data ($R_{\text{int}} = 0.026$) 5230 independent structure factors remained, 5081 of which with $F_0 \geq 4.0 \sigma(F_0)$ were deemed "observed" and used for all further calculations. $P2_1$ was assumed as space group and confirmed by the successful refinement of the structure. The centrosymmetric alternative $P2_1/m$ can be excluded, because the molecule does not contain an inversion center or a plane of symmetry as required by $P2₁/m$ for $Z = 2$. Reduced cell calculations did not indicate any higher symmetry (DELOS¹⁹⁾, LEPAGE²⁰⁾). The structure was solved by automated Patterson methods (SHELXS-86²¹⁾). 14H atoms out of a total of 24 could be located in difference syntheses, the remainder was calculated at idealized geometrical positions. Full-matrix least-squares refinement of 306 parameters converged at R $(R_w) = 0.025$ (0.032), $w = 1/\sigma^2(F_o)$ (function minimized: $\sum w(|F_o| - |F_o|^2)$; *SHELX-76²²⁾*. All non-H atoms were refined anisotropically, the H atoms were included as fixed atom contributions in the structure factor calculations $(U_{\text{iso}} = 0.05 \text{ Å}^2)$. Refinement of the inverse data set yielded $R(R_n) = 0.053$ (0.067). The residual electron densitiy showed no anomalies $[\Delta \varrho_{fin}$ (max/min) = $1.08/- 2.02 e/\text{\AA}^3$]. Table 1 contains the atomic coordinates, Table 2 selected distances and angles. Figure 1 shows the molecular structure. Complete tables of atomic parameters and observed and calculated structure factor amplitudes have been deposited²³⁾.

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters for $3 [U_{eq} = (U_1 U_2 U_3)^{1/3}$, where U_i are the eigenvalues of the U_{ij} matrix]

ATOM	X/A	Y/B	z/c	$U(\mathbf{eq.})$
AU1	0.21000(3)	0.00000	0.85067(2)	0.018
AU2	0.04654(3)	0.12100(3)	0.65864(2)	0.019
CL1	0.3359(3)	$-0.1207(2)$	0.7536(2)	0.030
CL2	$-0.1031(3)$	$-0.0407(2)$	0.6319(2)	0.028
P1	0.1160(2)	0.1302(2)	0.9515(1)	0.018
P ₂	0.1901(2)	0.2785(2)	0.6921(2)	0.019
C1	0.1243(9)	0.2757(6)	0.8949(6)	0.019
C11	0.023(1)	0.3558(7)	0.9002(7)	0.029
C2	0.2541(9)	0.2923(6)	0.8334(6)	0.018
C ₂₁	0.392(1)	0.3107(8)	0.8796(7)	0.030
C111	0.2256(8)	0.1383(7)	1.0831(6)	0.021
C112	0.295(1)	0.0358(8)	1.1251(7)	0.025
C113	0.370(1)	0.0367(8)	1.2263(7)	0.033
C114	0.384(1)	0.1380(9)	1.2837(6)	0.031
C115	0.319(1)	0.2413(8)	1.2428(7)	0.031
C116	0.237(1)	0.2397(9)	1.1417(7)	0.029
C121	-0.0773(8)	0.1112(7)	0.9685(6)	0.020
C122	$-0.172(1)$	0.0525(8)	0.8896(6)	0.025
C123	-0.321(1)	0.0401(9)	0.8969(7)	0.031
C124	$-0.3782(9)$	0.0886(8)	0.9822(8)	0.027
C125	$-0.284(1)$	0.1483(8)	1.0603(7)	0.029
C126	-0.133(1)	0.1609(8)	1.0541(6)	0.026
C211	0.3565(9)	0.2735(7)	0.6318(6)	0.022
C ₂₁₂	0.449(1)	0.1778(8)	0.6534(7)	0.031
C213	0.575(1)	0.1652(9)	0.6030(9)	0.034
C ₂₁₄	0.606(1)	0.245(1)	0.5335(7)	0.037
C ₂₁₅	0.513(1)	0.339(1)	0.5091(7)	0.033
C ₂₁₆	0.389(1)	0.3556(7)	0.5583(6)	0.026
C ₂₂₁	0.097(1)	0.4157(8)	0.6564(6)	0.024
C ₂₂₂	0.170(1)	0.5219(7)	0.6856(7)	0.026
C223	0.096(1)	0.620(1)	0.6594(7)	0.034
C ₂₂₄	$-0.051(1)$	0.6252(9)	0.6048(7)	0.030
C225	-0.121(1)	0.5195(9)	0.5783(7)	0.033
C ₂₂₆	-0.046(1)	0.4148(7)	0.6039(7)	0.025

Table 2. Selected distances [A] and angles ["I for **3** (estimated standard deviations in units **of** the last significant figure are given in parentheses)

CAS Registry Numbers

50960-82-2 / [(COhRhCI],: 14523-22-9 / ethyl vinyl ether: 109-92-2 **2:** 116011-74-6 / **3:** 119620-41-6 / **4:** 119638-25-4 / [(CO)AuCI]:

- ')P. G. Jones, *Gold Bull.* **14** (1981) 102, 159; **16** (1983) 114; **19**
- (1986) 46. (1986) 46. (1986) 46. (1986) 46. (1986) 46. (1986) 568. (1986) 566. 2b) **H. Schmid-Riede, G. Müller,** *Organometallics* **5** (1986) 566. ^{2b}) **H. Schmid**baur, A. Wohlleben, U. Schubert, G. Huttner, *Chem. Ber.* **110** (1977) 2751. - ") **H.** Schmidbaur, W. Graf, G. Miiller, *Angew. Chem. Int. Ed. Engl.* **27** (1988) 417; *Angew. Chem.* **100** (1988) 439.
- **3,** W. Ludwig, W. Meyer, *Helu. Chim. Acta* **65** (1983) 934; W. Bensch, M. Prelati, W. Ludwig, *J. Chem. SOC., Chem. Commun.* **1986.** 1762.
- **4,** H. Schmidbaur, C. Hartmann, F. E. Wagner, *Hyperfine Interact.* **40** (1988) 335.
- ') Y. Jiang, *S.* Alvarez, R. Hoffmann, *Inorg. Chem. 24* (1985) 749; P. K. Mehrotra. R. Hoffmann. *ibid.* **17** (1978) 2187.
- ') P. Pyykko, J. P.' Desclaux, *Acc. Chem. Res.* **12** (1979) 276; K. **S.** Pitzer, *ibid.* **12** (1979) 271.
- **7,** T. Ziegler, J. G. Snijders, E. J. Baerends, *J. Chem. Phys.* **74** (1981) **1179** *1LIl.*
- ') J. Bravo, J. *S.* Casas, Y. P. Mascarenhas, A. Sanchez, C. de 0. P. Santos, J. Soedo, *J. Chem. SOC., Chem. Commun,* **1986,** 1100.
- *9,* **S.** Wang, J. P. Fackler Jr., *Organometallics* **7** (1988) 2415.
- **lo)** G. Erker, C. Kriiger, G. Miiller in *Advances* **in** *Organornetallic Chemistry* (F. G. A. Stone, R. West, Eds.), p. 1 ff, Academic Press, New York 1985.
- **If) V.** Schomaker, L. Pauling, *J. Am. Chem. SOC.* **61** (1939) 1769; A. V. Scholmasch, D. Bastiansen, M. Tratteberg, Acta Chem. Scand.
12 (1958) 1221; W. Haugen, M. Tratteberg, Acta Chem. Scand.
K. Kuchitsu, T. Fufuyama, Y. Morino, J. Mol. Struct. 1 (1968) 463.
- D. R. Lide Jr., *J. Chem. Phys.* **37** (1962) 2074; D. R. Lide Jr., M. Jen, *ibid.* **40** (1964) 252.
- R. T. Hobgood Jr., J. H. Goldstein, *J. Mol. Spectrosc.* **12** (1964) 76; A. L. Segre, L. Zetta, A. DiCorato, *ibid.* **32** (1969) 296; R. L. Lipnick, E. W. Garbisch Jr., *J. Am. Chem. SOC.* **95** (1973) 6370.
- **14)** P. W. Mui, E. Grunwald, *J. Am. Chem. SOC.* **104** (1984) 6562.
- **Is)** K. Bradacs, L. Kahovec, *Z. Phys. Chem.* **48** (1940) 63; **R. S.** Rasmussen, R. R. Brattain, *J. Chem. Phys.* **15** (1947) 131; C. M. Richards, J. R. Nielsen, *J. Opt. SOC. Am.* **40** (1950) 438; M. I. Bateuv, A. *S.* Onischenko, A. D. Matveeva, N I. Aronova; *Proc. Acad. Sci. USSR, Chem. Sect.* **132** (1960) 543; D. J. Marais, N. Sheppard, **B.** P. Stoicheff, *Tetrahedron* **17** (1962) 163; **N. V.** Tarasova, L. M. Sverdlov, *Opt. Spectrosk.* **21** (1966) 176; A. R. **H.** Cole, G. M. Mohay, G. A. Osborne, *Spectrochim. Acta, Part A,* **23** (1967) 909; L. **A.** Carreira, *J. Chem. Phys.* **62** (1975) 3851.
- **16)** J. C. Tai, N. L. Allinger, *J. Am. Chem. SOC.* **98** (1976) 7928; A. J. P. Devaquet, R. **E.** Townshend, W. J. Hehre, *ibid.* **98** (1976) 4068; L. Radom, J. A. Pople, *ibid.* **92** (1970) 4786.
- **17)** L. Born, *Acta Cryst., Sect. B,* **25** (1969) 1460.
- **")** H. Schmidbaur, **K.** Dziwok, G. Reber, G. Miiller, *Helu. Chim. Acta* **70** (1987) 1905.
- **19)** H. Zimmermann, H. Burzlaff, *Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.* **170** (1985) 241.
- *M,* Y. **Le** Page, *J. Appl. Cryst.* **15** (1982) 255.
- **21) G.** M. Sheldrick in *Crystallographic Computing 3* (G. M. Sheld-rick, C. Kriiger, R. Goddard, Eds.), p. 175, Oxford University Press, Oxford 1985.
- ²²⁾ G. M. Sheldrick, SHELX-76, Program for Crystal Structure De*termination,* University of Cambridge, Cambridge, England 1976.
- ²³⁾ Fachinformationszentrum Energie Physik Mathematik GmbH,
D-7514 Eggenstein-Leopoldshafen 2. Inquiries should be accompanied by the depository number CSD-53706, the names of the authors, and the literature citation.
- **24)** K. Dziwok, *Diplomarbeit.* Technische Universitat Miinchen, 1987.

[355/88]